Benha University Faculty Of Engineering at Shoubra

ECE 411 Antennas & Wave propagations (2016/2017) <u>ecture (3</u> Antenna Parameters **Prepared By :** Dr. Moataz Elsherbini motaz.ali@feng.bu.edu.eg

Agenda

Remember (Solid angle & Directivity)

Power density

Radiation intensity and Radiated power

Beam efficiency

Gain

Radiation Resistance

Effective and Physical Aperture

Frris Transmission equation

1 - Remember (Solid angle & Directivity)

2 - Power density

Power density

Average Poynting vector:

$$\mathbf{P}_{av} = \frac{1}{2} \operatorname{Re} \left\{ \mathbf{E}(x, y, z) \times \mathbf{H}(x, y, z)^* \right\} \quad (W/m^2)$$

Note that Poynting vector is a *real* vector. Its magnitude gives the instantaneous or average **power density** of the electromagnetic wave. Its direction gives the direction of the power flow at that particular point.

$$W_{av} = \frac{1}{2} \operatorname{Re}(E \chi H^*) = \frac{U}{r^2} (W / m^2)$$

$$P_{rad} = \bigoplus_{4\pi} W_{av} \, dA = \bigoplus_{4\pi} \frac{1}{2} \operatorname{Re}(E \, \chi H^*). \, (r^2 Sin \, \theta d \, \theta d \, \phi)$$

Example (1)

A hypothetical isotropic antenna is radiating in free-space. At a distance of 100 m from the antenna, the total electric field (E_{θ}) is measured to be 5 V/m. Find the (a) Power density (W_{rad})

(b) Power radiated (P_{rad})

(a)
$$\mathbb{W}_{rad} = \frac{1}{2} [\mathbb{E} \times \mathbb{H}^*] = \frac{\mathbb{E}^2}{2\eta} \hat{a}_r = \frac{5^2 \hat{a}_r}{2(120\pi)} = 0.03315 \hat{a}_r \quad \text{Watts/m}^2$$

(b) $\Pr_{rad} = \oint_S W_{rad} \, dS = \int_0^{2\pi} \int_0^{\pi} (0.03315) (r^2 \sin \theta \, de \, d\phi)$
 $= \int_0^{2\pi} \int_0^{\pi} (0.03315) (100)^2 \cdot \sin \theta \, de \, d\phi$
 $= 2\pi (0.03315) (100)^2 \cdot \int_0^{\pi} \sin \theta \, d\theta = 2\pi (0.03315) (100)^2 \cdot 2$
 $= 4165.75 \text{ watts}$

3- Radiation intensity and Radiated power

Radiation intensity and Radiated power

Radiation intensity in a given direction is the power per unit solid angle radiated in this direction by the antenna.

$$U = \frac{dP_{rad}}{d\Omega} W \Big/_{Sr} \implies P_{rad} = \bigoplus_{4\pi} U d\Omega$$

$$D = \frac{4\pi}{\Omega_A} = \frac{4\pi}{\iint_{4\pi} U_n(\theta, \varphi) d\Omega} = \frac{4\pi U_{\text{max}}}{\iint_{4\pi} U(\theta, \varphi) d\Omega} = \frac{4\pi U_{\text{max}}}{P_{rad}}$$

$$U = r^2 * W_{av}$$

Example (2)

The radiation intensity of antenna is given by $U=B_oCos\theta$. U exists only in the upper hemisphere, Find

The exact directivity , The approximate directivity , The decibel difference.

$$U = U_{n} = P_{n} = Cos\theta.$$
(a) $Dexact = \frac{4\Pi}{2\Pi_{2}^{\Pi}} = \frac{4\Pi}{\int_{0}^{\Pi} Cos \; \theta \; Sin\theta d\theta d\phi} = \frac{4\Pi}{(2\Pi)(\frac{-Cos^{2}\theta}{2})_{0}^{\frac{\pi}{2}}} = 4.$
(b) $D \; approximate = \frac{4\Pi}{\theta_{HP}\phi_{HP}} = \frac{4\Pi}{\theta_{HP}\phi_{HP}} = \frac{4\Pi}{(\theta_{HP})^{2}} |_{sr} = \frac{41253}{(\theta_{HP})^{2}} |_{deg2}.$
We calculate $\theta_{max} \Rightarrow (Cos\theta_{max} = 1) \Rightarrow at \; \theta_{max} = 0^{\circ}$,
We calculate $\theta_{h} \Rightarrow (Cos\theta_{h} = \frac{1}{2}) \Rightarrow \theta_{h} = 60^{\circ}$
 $\theta_{HP} = 2*|\theta_{max}-\theta_{h}| = 2*|0^{\circ} - 60^{\circ}| = 120^{\circ}$
so : Dapprox. $= \frac{41253}{(\theta_{HP})^{2}} |_{deg2} = = \frac{41253}{(120)^{2}} = 2.86.$
(c) Decibel difference = 10 log $\frac{4}{2.86} = 1.46db.$

Example (3)

The power radiated by a lossless antenna is 10 watts. The directional characteristics of the antenna are represented by the radiation intensity of $U=B_{o}\cos^{3}\theta$ (watts/unit solid angle) ($0\le\theta\le\pi/2$, $0\le\varphi\le2\pi$) Find the

(a) Maximum power density (in watts/square meter) at a distance of 1,000 m (assume far-field distance). Specify the angle where this occurs.

(b) Exact Directivity of the antenna (dimensionless and in dB).

(c) Exact Gain of the antenna (dimensionless and in dB).

(a)
$$P_{rad} = \int_{0}^{2\pi} \int_{0}^{\pi/2} U \sin \theta \, d\theta \, dy = B_{0} \int_{0}^{2\pi} \int_{0}^{\pi/2} \cos^{3}\theta \sin \theta \, d\theta \, dy$$

 $= 2\pi B_{0} \int_{0}^{\pi/2} \cos^{3}\theta \sin \theta \, d\theta$
 $P_{rad} = 2\pi B_{0} \left(-\frac{\Theta S^{4} \theta}{4}\right) \Big|_{0}^{\pi/2} = \frac{\pi}{2} B_{0} = 10 \Rightarrow B_{0} = \frac{20}{\pi} = 6.3662$
 $U = 6.3662 \cos^{3}\theta$
 $W = \frac{U}{Y^{2}} = \frac{6.3662}{Y^{2}} \cos^{3}\theta = \frac{6.3662}{(10^{3})^{2}} \cdot \cos^{3}\theta = 6.3662 \times 10^{5} \cos^{3}\theta}{W|_{max}} = 6.3662 \times 10^{5} \cdot \cos^{3}\theta|_{max}} = 6.3662 \times 10^{5} \cdot \cos^{3}\theta}$
(b) $D_{0} = \frac{4\pi Umax}{Prad} = \frac{4\pi (6.3662)}{10} = 8 = 9 \, dB$
(c) $G_{0} = \theta + D_{0} = 8 = 9 \, dB$

4- Beam efficiency

Beam efficiency

 Γ = voltage reflection coefficient at the input terminals of the antenna Z_{in} = antenna input impedance, Z_0 = characteristic impedance of the transmission line. VSWR = voltage standing wave ratio

$$e_{cd} = \frac{R_r}{R_L + R_r}$$
 (dimensionless)

Gain

Gain

- Defined as ratio of radiation intensity in a given direction to radiation intensity obtained if accepted power where radiated isotropic.
- Gain does not account for losses arising from impedance mismatches

$$G(\theta, \phi) = e_{cd} \left[4\pi \frac{U(\theta, \phi)}{P_{rad}} \right]$$
$$G(\theta, \phi) = e_{cd} D(\theta, \phi)$$

$$e_{cd} = \frac{R_r}{R_L + R_r}$$
 (dimensionless)

the maximum value of the gain

$$G_0 = G(\theta, \phi)|_{\max} = e_{cd}D(\theta, \phi)|_{\max} = e_{cd}D_0$$

Absolute Gain

Take into account losses arising from impedance mismatches

$$G_{\text{abs}} = e_r G(\theta, \phi) = (1 - |\Gamma|^2) G(\theta, \phi) = e_r e_{cd} D(\theta, \phi) = \mathsf{e}_t D(\theta, \phi).$$

where

 $e_r = (1 - |\Gamma|^2)$, reflection (mismatch) efficiency,

 $e_t = total efficiency$

· For the maximum values

$$G_{0abs} = \mathsf{e}_t D_0.$$

$$P_{rad} = e_t * P_{in}$$

Example (4)

A lossless resonant half-wavelength dipole antenna, with input impedance of 73 ohms, is connected to a transmission line whose characteristic impedance is 50 ohms. Assuming that the pattern of the antenna is given approximately by $U=B_0\sin^3\theta$. Find the maximum gain and maximum absolute gain of this antenna.

$$U|_{\max} = U_{\max} = B_0$$

$$P_{rad} = \int_0^{2\pi} \int_0^{\pi} U(\theta, \phi) \sin \theta \, d\theta \, d\phi = 2\pi B_0 \int_0^{\pi} \sin^4 \theta \, d\theta = B_0 \left(\frac{3\pi^2}{4}\right)$$

$$D_0 = 4\pi \frac{U_{\max}}{P_{rad}} = \frac{16}{3\pi} = 1.697$$

Since the antenna was stated to be lossless, then the radiation efficiency $e_{cd} = 1$.

$$G_0 = e_{cd} D_0 = 1(1.697) = 1.697$$
$$e_r = (1 - |\Gamma|^2) = \left(1 - \left|\frac{73 - 50}{73 + 50}\right|^2\right) = 0.965$$
$$G_{0abs} = e_0 D_0 = 0.965(1.697) = 1.6376$$

6- Radiation Resistance

Radiation Resistance

$$R_{rad} = \frac{2P_{rad}^{total}}{\left|I_{o}\right|^{2}} = \frac{2 \oint_{4\pi} U(\theta, \varphi) d\Omega}{\left|I_{o}\right|^{2}}$$

For Infinitesimal Dipole

$$R_{rad} = 80\pi^2 (\frac{\ell}{\lambda})^2$$

For Short Dipole

$$R_{rad} = 20\pi^2 (\frac{\ell}{\lambda})^2$$

Example (5)

Find R_r of a unidirectional pattern of antenna with U=8Sin² θ Sin³ ϕ wsr⁻¹, where $0 \le \theta \le \Pi \& 0 \le \phi \le \Pi$. If I_{rms}=3A.

$$P_{rad} = \int_{0}^{\Pi} \int_{0}^{\Pi} U d\Omega = \int_{0}^{\Pi} \int_{0}^{\Pi} (8Sin^{2}\theta Sin^{3}\phi) * Sin\theta d\theta d\phi = I^{2}R_{r}$$
$$R_{r} = 1.6 \Omega$$

Example (6)

An isotropic antenna has a field pattern given by E=10 I_o /r V/m, where I is the amplitude of current, r is distance (m), find R_r . repeat for hemisphere antenna.

$$P = SA = \frac{E^2}{Z}A = 0.5\frac{100I^2}{r^2 * Z}(4\Pi * r^2) \Rightarrow \text{for hemisphere } A = (2\Pi * r^2)$$

$$P = 0.5I_o^2 R_r$$

$$So \ 0.5\frac{100I_o^2}{r^2 * Z}(4\Pi * r^2) = 0.5I_o^2 R_r \Rightarrow R_r = 3.33\Omega$$

7- Effective and Physical Aperture

Effective and Physical Aperture

The *effective antenna aperture* is the ratio of the available power at the terminals of the antenna to the power flux density of a plane wave incident upon the antenna, which is polarization matched to the antenna. If there is no specific direction chosen, the direction of maximum radiation intensity is implied.

Example (7)

If the aperture efficiency of an antenna is 0.7 and the beam traveling at 6 GHZ. Calculate the directivity, HPBW, and FNBW (approximately). Given circular aperture of diameter 3 meter.

$$D = \frac{4\Pi}{\lambda^2} * \eta * A_{em} = \frac{4\Pi}{\lambda^2} * 0.7 * (\Pi * r^2) = \frac{4\Pi}{(\frac{3 * 10^8}{6 * 10^9})^2} * 0.7 * (\Pi * (1.5)^2) = 24871$$

So $D = 24871$.
 $D = \frac{41253}{\theta_{HP}} = \frac{41253}{(\theta_{HP})^2} = 24871$
So $(\theta_{HP}) = 1.28^{\circ}$.
FNBW = $2 * (\theta_{HP}) = 2.57^{\circ}$.

Example (8)

What is the maximum effective aperture (approximately) for a beam antenna having HPBW of 30^o & 35^o in perpendicular planes intersecting in the beam axis? Minor lobes are small and may be neglected.

$$D = \frac{4\Pi}{\lambda^2} A_{em} \Rightarrow A_{em} = \frac{D}{4\Pi} \lambda^2$$
$$D = \frac{41253}{\theta_{HP}} \phi_{HP} = \frac{41253}{30*35} = 39.3$$
$$A_{em} = \frac{D}{4\Pi} \lambda^2 = 3.2 \lambda^2$$

8- Frris Transmission Equation

Example (9)

What is the max? Power received at a distance of 0.5 Km. over a free-space 1GHZ circuit consisting of a transmitting antenna with 25dB gain and receiving antenna with 20dB gain? The gain is with respect to a lossless isotropic source. The transmitting antenna input is 150W.

$$\lambda = \frac{C}{F} = 3*10^8 / 1*10^9 = 0.3m.$$

$$\frac{P_r}{P_{in}} = G_{in}G_r(\frac{\lambda}{4\Pi R})^2.$$

$$G_r|_{db} = 10\log G_r \Rightarrow G_r = 100$$

$$G_{in}|_{db} = 10\log G_{in} \Rightarrow G_{in} = 316.22$$

$$\frac{P_r}{150} = 100*316.22(\frac{0.3}{4\Pi*0.5*10^3})^2 \Rightarrow P_r = 10.8mw.$$

Zatoona

$$P_{rad} = \bigoplus_{4\pi} W_{av} \, dA = \bigoplus_{4\pi} \frac{1}{2} \operatorname{Re}(E \,\chi H^*) \cdot (r^2 Sin \theta d \,\theta d \,\phi) = \bigoplus_{4\pi} U \, d\Omega = \frac{1}{2} I_o^2 R_r$$

$$P_{rad} = e_t * P_{in} \qquad U = r^2 * W_{av}$$

$$D = \frac{4\pi}{\Omega_A} = \frac{4\pi}{\iint_{4\pi} U_n(\theta, \varphi) d\Omega} = \frac{4\pi U_{max}}{\iint_{4\pi} U(\theta, \varphi) d\Omega} = \frac{4\pi U_{max}}{P_{rad}}$$

$$e_t = e_r e_{cd}$$

$$e_r = 1 - |\Gamma|^2$$

$$\Gamma = \frac{Z_{input} - Z_{generator}}{Z_{input} + Z_{generator}}$$

$$G = e_t \cdot D = e_r e_{cd} \cdot D \qquad e_t \leq 1$$

$$R_{rad} = \frac{2P_{rad}^{total}}{|I_o|^2} = \frac{2 \oiint U(\theta, \varphi) d\Omega}{|I_o|^2}$$
For Infinitesimal $R_{rad} = 80\pi^2 (\frac{\ell}{\lambda})^2$
For Short Dipole $R_{rad} = 20\pi^2 (\frac{\ell}{\lambda})^2$

$$D = \frac{4\pi}{\Omega_A} = 4\pi \frac{A_e}{\lambda^2} \qquad A_{em} = \frac{\lambda^2}{4\pi} D_o \qquad A_e = \xi_{ap} A_{em}$$

$$\frac{P_r}{P_t} = \left(\frac{\lambda}{4\pi R}\right)^2 G_t G_r$$

Next Lecture

Ch(2): Antenna parameters (Cont.) Polarization Ch (3) : Point Sources

Dr. Moataz Elsherbini motaz.ali@feng.bu.edu.eg

Thank You

4141 A A